Star formation in metal-poor gas clouds
نویسندگان
چکیده
Observations of molecular clouds in metal-poor environments typically find that they have much higher star formation rates than one would expect based on their observed CO luminosities and the molecular gas masses that are inferred from them. This finding can be understood if one assumes that the conversion factor between CO luminosity and H2 mass is much larger in these low-metallicity systems than in nearby molecular clouds. However, it is unclear whether this is the only factor at work, or whether the star formation rate of the clouds is directly sensitive to the metallicity of the gas. To investigate this, we have performed numerical simulations of the coupled dynamical, chemical and thermal evolution of model clouds with metallicities ranging from 0.01 to 1 Z . We find that the star formation rate in our model clouds has little sensitivity to the metallicity. Reducing the metallicity of the gas by two orders of magnitude delays the onset of star formation in the clouds by no more than a cloud free-fall time and reduces the time-averaged star formation rate by at most a factor of 2. On the other hand, the chemical state of the clouds is highly sensitive to the metallicity, and at the lowest metallicities, the clouds are completely dominated by atomic gas. Our results not only confirm that the CO-to-H2 conversion factor in these systems depends strongly on the metallicity, but also show that the precise value is highly time-dependent, as the integrated CO luminosity of the most metal poor clouds is dominated by emission from short-lived gravitationally collapsing regions. Finally, we find evidence that the star formation rate per unit H2 mass increases with decreasing metallicity, owing to the much smaller H2 fractions present in our low-metallicity clouds.
منابع مشابه
Star Formation Regulation, Gas Cycles and the Chemical Evolution of Dwarf Irregular Galaxies
Due to their low gravitational energies, dwarf galaxies are greatly exposed to energetical influences from internal and external sources. By means of chemodynamical models we show that their star formation is inherently self-regulated, that peculiar abundance ratios can only be achieved assuming different star-formation episodes and that evaporation of interstellar clouds embedded in a hot phas...
متن کاملCluster Mass and Metallicity Distributions: Reconstructing the Events During Halo Formation
Globular clusters in most large galaxies are a mixture of metal-poor and metal-rich (bimodal), but the halo stars are almost entirely metal-rich. This and other lines of evidence argue that the metal-poor globular clusters formed within widely distributed 10 − 109M⊙ gas clouds (supergiant GMCs) during an early burst in which most of the gas was ejected or unused till later rounds of star format...
متن کاملDust and Gas as Seeds for Metal-Poor Star Formation
I address the issue of dust and gas as seeds for metal-poor star formation by reviewing what we know about star formation in nearby dwarf galaxies and its relationship to the gas and dust. I (try to) speculate on the extent to which processes in nearby galaxies mimic star formation in the early universe.
متن کاملPhotodissociative Regulation of Star Formation in Metal-Free Pregalactic Clouds
We study the H2 photodissociation regions around OB stars in primordial gas clouds whose virial temperatures are between a few hundred and a few thousand Kelvin. In such small objects, a single O star can photodissociate a mass equal to that of the cloud itself. As a result, the clouds deplete their molecular coolant and cannot cool in a free-fall time, and subsequent star formation is totally ...
متن کاملFragmentation of star-forming clouds enriched with the first dust
The thermal and fragmentation properties of star-forming clouds have important consequences on the corresponding characteristic stellar mass. The initial composition of the gas within these clouds is a record of the nucleosynthetic products of previous stellar generations. In this paper we present a model for the evolution of star-forming clouds enriched by metals and dust from the first supern...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012